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We analytically and numerically study the probabilistic properties of inverted and mirror repeats in model
sequences of nucleic acids. We consider both perfect and nonperfect repeats, i.e., repeats with mismatches and
gaps. The considered sequence models are independent identically distributed �i.i.d.� sequences, Markov pro-
cesses and long-range sequences. We show that the number of repeats in correlated sequences is significantly
larger than in i.i.d. sequences and that this discrepancy increases exponentially with the repeat length for
long-range sequences.
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I. INTRODUCTION

The complete sequencing of large genomes has lead us to
reconsider the importance of noncoding DNA or RNA in the
regulation of the activity of the cell �1�. Many different types
of sequences able to have a regulatory role have been dis-
covered. Among these sequences inverted and mirror repeats
play an important role. For example, inverted repeats provide
the necessary condition for the potential existence of a hair-
pin structure in the transcribed messenger RNA or cruciform
structures in DNA �2�. Inverted repeats play also an impor-
tant role for regulation of transcription and translation. In
bacteria, inverted repeats and the associated hairpin struc-
tures are often part of �-independent transcription termina-
tors �3,4�. In recent years there has been a growing interest
for these structures triggered by the discovery of new classes
of regulatory elements. Prominent examples of these new
regulatory RNA families are microRNA �miRNA� �5–7� and
small interference RNA �siRNA� �8,9�. Most of these struc-
tures share the property of being associated with a hairpin
secondary structure. DNA or RNA short sequences that may
be associated to RNA secondary structures are present in
genomes of different species of phages, viruses, bacteria, and
eukaryotes. Indications about the potential existence of RNA
secondary structures can be inferred throughout the detection
of short pair sequences having the characteristic of inverted
repeats in the investigated genomes �10–13�. Also mirror re-
peats may have multiple biological roles. For example, per-
fect or near-perfect homopurine or homopyrimidine mirror
repeats can adopt triple-helical H conformations �14�. Sev-
eral computer programs have been developed to detect re-
peats and/or the associated secondary structure in DNA or
RNA sequences �15,16�. Few studies have considered the
problem of the expected number of repeats in model se-
quences �17,18�, mainly investigating the clustering of re-
peats.

The purpose of this paper is to derive analytical and nu-
merical expressions for the expected number of two specific,
yet very important, types of repeats under the assumption
that the investigated sequence can be modeled with a given
family of stochastic process. In this paper we consider in-
verted and mirror repeats and we investigate four different
types of sequence models. Specifically, we consider indepen-

dent and identically distributed sequences, first-order Mar-
kov chains, higher order Markov processes, and long-
memory sequences. For the first two types of models we are
able to derive analytically expressions for the number of re-
peats, while for the last two classes of models we use nu-
merical simulations to infer phenomenological expressions
for the expected number of repeats.

The outline of the paper is the following. In Sec. II we
introduce the investigated repeats and in Sec. III we intro-
duce the sequence models discussed in the paper. In Sec. IV
we consider independent and identically distributed se-
quences and we derive several analytical expressions for re-
peats. In Sec. V we consider first-order Markov chains and in
Sec. VI we compute numerically the expected number of
repeats for higher order Markov processes. In Sec. VII we
consider long-memory sequences and Sec. VIII concludes.

II. INVERTED AND MIRROR REPEATS

In this paper we consider two types of repeats, i.e., in-
verted and mirror repeats. These repeats are composed by
two nonoverlapping segments of nucleotide sequence that
can be separated by another nucleotide subsequence. A mir-
ror repeat is, for example, 5�GATTCGAacgAGCTTAG3�
where the sequence GATTCGA is repeated in an inverted
way after the spacer acg. An inverted repeat is, for example,
given by the sequence 5�GATTCGAacgTCGAATC3� where
the sequence GATTCGA is repeated and complemented after
the spacer acg. One of the problems in counting repeats is the
fact that a single repeat can be counted many times if one
does not define in some way a maximal repeat. Consider, for
example, the sequence 5�aggaatcgatcttaacgaagatcgattcca3�.
This sequence contains many different inverted repeats,
for example, 5�aggAATCGatcttaacgaagatCGATTcca3�
or 5�aggaaTCGATCttaacgaaGATCGAttcca3�. If one
does not consider inverted with mismatches,
there is one maximal inverted repeat, i.e.,
5�aGGAATCGATCTTaacgAAGATCGATTCCa3�, in
which the first base before and after the structure are not
complementary and also the first and the last base of the
spacer aacg are not complementary. When one considers in-
verted or mirror repeats with mismatches the definition of
maximal repeat is less clear and must be clearly defined �see
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Sec. IV B�. In this paper we are interested in finding the
expected number of maximal inverted and mirror repeats in
model genome sequences.

A repeat is characterized by the assignment of a matching
rule between couples of nucleotides. For RNA sequences the
matching rule is defined by a 4�4 matrix whose rows and
columns correspond to nucleotides A, C, G, and U. A matrix
entry is 1 if the matching between the nucleotides in the row
and in the column is allowed and zero elsewhere. For ex-
ample, the characteristic matrix for inverted repeats in which
only Watson-Crick base pair �i.e., A-U and C-G� are allowed
is

M�inv� =�
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0
� . �1�

If the pairing G-U �or GU wobble� is allowed the matrix
becomes

M�inv�� =�
0 0 0 1

0 0 1 0

0 1 0 1

1 0 1 0
� . �2�

Finally, for mirror repeats the characteristic matrix is

M�mir� =�
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
� . �3�

Inverted and mirror repeats can be formed both in DNA and
in RNA. Our results are the same for both nucleic acids
provided one replaces T with U.

Given a matching rule, a perfect repeat of stem length �
exists at point x when, for a loop value m, every base x+1
− i matches every base x+m+ i for 1� i��. The sequence
from x+1−� to x will be called left arm of the stem, whereas
the sequence from x+m+1 to x+m+� will be called right
arm of the stem. Since we are interested in maximal repeats,
the repeats are defined also by requiring that base x+1 does
not match base x+m and base x−� does not match with base
x+m+�+1. We will call these repeats perfect because there
are no bulges or mismatches. A gap or one-base bulge is
present in the left arm of the stem if there exists an index j
such that the above relation is true for i� j, whereas for i
� j every base x− i matches every base x+m+ i. The exten-
sion to bulge in the right arm of the stem is straightforward.
Finally, a one nucleotide mismatch �or internal loop� is
present in the stem if for some i� between 1 and �−2, the
base x− i� does not match with base x+m+ i�+1. More mis-
matches or a mismatch composed of more than one base can
be present in a stem. Inverted repeats are known to be able to
create hairpin structures in single strand nucleic acids. Figure
1 shows an example of hairpin structure formed by an in-
verted repeat with a bulge and a three base mismatch. The

caption should help the reader in understanding the terminol-
ogy used in this paper.

The purpose of this paper is to derive the expected num-
ber of repeats of a given type for simple models of nucle-
otide sequences. We shall indicate with N�� ,m ,k ,g� the ex-
pected number of repeats of stem of length �, loop of length
m, k one-nucleotide mismatches, and g gaps. The calculation
of the expected number of repeats is complex for two main
reasons. The first problem is to compute the probability
P�� ,m ,k ,g� that a given short sequence generated according
to a sequence model can host a repeat with given character-
istics. Once this probability is known the next problem is to
estimate the expected number of repeats observed in a long
sequence �genome� composed by N nucleotides. If the occur-
rence of different structures were independent one from the
other the expected number would be simply N�� ,m ,k ,g�
=NP�� ,m ,k ,g�. Unfortunately, in general the occurrence of
a given structure is not independent of the presence of an-
other structure. In the statistical search of simple words in
genomes this is a known problem �see, for example, �19��.
However, since we search for maximal repeats and the struc-
tures we are interested in are long and complex, we neglect
the problem of nonindependence. In all the cases considered
below we have performed extensive numerical simulations to
test our formulas and, indirectly, the independence assump-
tion. By performing careful statistical tests �usually �2 tests�
we cannot reject the hypothesis that our formulas are correct.
For this reason in the following we present the formulas both
for N�� ,m ,k ,g� and for P�� ,m ,k ,g�.

III. MODELS FOR NUCLEOTIDE SEQUENCES

A. Independent identically distributed sequences

The simplest model for nucleotide sequences is the inde-
pendent identically distributed �i.i.d.� model. In this model
one assumes independent nucleotides with probabilities pa,

FIG. 1. Secondary structure formed by an inverted repeat in
single stranded RNA. Bases from 7 to 25 constitute the left arm of
the stem and bases from 32 to 49 constitute the right arm. The loop
is made by bases 26–31. At base 19 there is a gap �or one-base
bulge�, and bases 12–14 and 42–44 constitute a three base mis-
match �or internal loop�. Note that base 6 is not complementary to
base 50 and base 26 is not complementary to base 31 in order to
have maximal repeats. According to the terminology used in the
paper we have �=18, m=6, k=3, g=1.

FABRIZIO LILLO AND MARCO SPANÒ PHYSICAL REVIEW E 76, 041914 �2007�

041914-2



pc, pg, and pu, such that pa+ pc+ pg+ pu=1. Although it is
known that correlation between nucleotides are significant,
this model allows exact analytical calculations and can be
used as a useful starting point.

It is useful to define the probability vector pT

��pa , pc , pg , pu�, where the elements are the nucleotide prob-
abilities. Given a type of structure characterized by the ma-
trix M we introduce the scalar quantity

q = pTMp . �4�

For example, inverted repeats have q=2papu+2pcpg,
whereas for mirror repeats q= pa

2+ pc
2+ pg

2+ pu
2.

B. Markov models

A better class of models for nucleotide sequences is the
class of Markov processes. Let us consider for convenience
the infinite sequence Xi, where i�Z and Z is the set of inte-
gers. An ergodic stationary mth-order Markov chain is char-
acterized by the transition matrix

p�am+1�a1, . . . ,am� = P�Xi = am+1�Xi−1 = am, . . . ,Xi−m = a1� .

�5�

The simplest Markov chain we shall consider extensively in
the following is the first-order Markov chain. This type of
process is characterized by the 4�4 transition matrix
p�a2 �a1�. By taking powers of this matrix one can also define
the k-step transition matrix whose elements are pk�b �a�
= P�Xi=b �Xi−k=a�. In this notation p�a2 �a1�= p1�a2�a1��.

The model parameters, i.e., the order of the Markov chain
and the transition probabilities, of a real sequence can be
estimated by the maximum-likelihood method �see, for ex-
ample, �19��.

C. Long-memory models

In recent years it has been proposed that parts of real
genomes are not well described by Markovian models, but
rather that a long-memory �or long-range� process describes
better the correlation properties of nucleotide sequences
�20–24�. There are several ways of detecting and modeling
correlation properties of nucleotide sequences. The approach
we will follow is called “DNA walk” �20� and consists in
mapping the nucleotide sequence in a one-dimensional ran-
dom walk x. Since there are four different residues in a RNA
sequence while the random walk has two possible directions
��x= ±1�, one needs to choose a mapping rule from the four
residues to the two directions. Several different mapping
rules have been introduced �24�. In the present paper we
consider two important rules: �i� the purine-pyrimidine rule
�or RY rule� which assigns �x= +1 if the residue is a purine
�A or G� and �x=−1 if the residue is a pyrimidine �C or U�
and �ii� the hydrogen bond energy rule �or SW rule� which
assigns �x= +1 for strongly bonded residues �C or G� and
assigns �x=−1 for weakly bonded residues �A or U�. This
second rule can be useful to take into account the isochore
structure of the genome �25�. By using these rules it has been
observed that in most cases noncoding DNA sequences, i.e.,
DNA sequences not coding for proteins, display long-

memory properties of the corresponding DNA walk. We
remind that a long-memory process is a process whose auto-
correlation function of �xi decays in time as
Corr��xi+	�xi�		−
, where 0�
�1. Long-memory pro-
cesses are an important class of stochastic process that have
found application in many different fields �26�. The autocor-
relation function of a long-memory process is not integrable
in 	 between 0 and +� and, as a consequence, the process
does not have a typical time scale. Long-memory processes
are better characterized by the Hurst exponent H that, for
long-memory processes, is H=1−
 /2. Thus for long-
memory processes 1/2�H�1.

Long-memory properties of nucleotide sequences has
been associated to different genome characteristics including
nucleosomal structure in eukaryotes �27�, to the presence of
isochores �25� and to the presence of tandem repeats �28�.
More recently it has been suggested that in some genomes
�for example, human� the correlation properties of DNA can-
not be captured by a single Hurst exponent, but rather that
the Hurst exponent may depend on the observation scale
�29,30�. Different scales can be associated with different bio-
logical structures �genes, transposable elements, isochores�.

In Sec. VII we use simulations of long-memory nucle-
otide sequences to obtain phenomenological expressions for
the expected number of inverted or mirror repeats. In order
to simulate long-memory nucleotide sequences we generate a
fractional Gaussian noise �FGN� signal �26� with Hurst ex-
ponent H0 by using the R package. The unconditional distri-
bution of the FGN is Gaussian and in order to obtain binary
sequences we simply take the sign of the FGN. Extensive
numerical simulations have shown that the sign of a FGN
has a Hurst exponent given by Hsign
H0−0.02. Thus the
algorithm to generate, for example, a long-memory nucle-
otide sequence with Hurst exponent H and according to rule
SW is the following: �i� generate a FGN with Hurst exponent
equal to H+0.02, �ii� take the sign, �iii� if the sign is positive
with probability 1/2 the nucleotide is C and with probability
1/2 the nucleotide is G, �iv� similarly, if the sign is negative
with probability 1/2 the nucleotide is A and with probability
1/2 the nucleotide is T. Note that in this way we obtain a
sequence with equal nucleotide frequencies. It is possible to
modify this algorithm to have a variable CG content by re-
placing the sign function with the Heavyside step function
�x−q� where x is the outcome of the FGN and q is an
appropriate quantile value �q=0 for a CG content of 50%�.
For a generic value of q, the correct amount to add to the
Hurst exponent has been estimated by careful numerical
simulations. It is worth noting that we have also used other
methods to generate the long-memory sequences obtaining
similar results. The investigated methods are the fARIMA
model �26� and the patch model �31�. Finally it is important
to stress that this simulation method under specifies the full
correlation structure of the nucleotide sequence. To give a
specific example consider a SW long-memory sequence with
a CG content close to one. In this limit the sequence is in fact
i.i.d. and the reason is that the model does not specify the
correlation of C and G.
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IV. INVERTED AND MIRROR REPEATS
IN i.i.d. SEQUENCES

A. Perfect repeats

The expected number of perfect repeats of stem length �
and loop length m in a i.i.d. genome of length N character-
ized by the parameter q is

N��,m� = N�1 − q��q�, �6�

where the exponent � is equal to 1 for m�1 and is equal to
2 for m�2. In other words we need to impose that the �
bases of the left arm of the stem match with the correspond-
ing bases in the right arm. Moreover, we need to impose that
the first couple of bases in the loop do not match, such as the
first couple of bases at the end of the stem. When the loop is
shorter than two nucleotides one cannot impose that the first
couple of bases in the loop do not match and this explains
the different value of the exponent �. Since in an i.i.d. se-
quence the occurrences of nucleotides are independent, prob-
abilities factorize and Eq. �6� is obtained. This expression
has been used, for example, in Ref. �12� to investigate the
number of perfect inverted repeats in bacterial genomes.

B. Inverted with mismatches

A mismatch in a repeat is the presence of a pair of nucle-
otides in the stem that do not match. We indicate with k the
number of mismatches in the stem and we look for an ex-
pression for N�� ,m ,k�. We prove that the expected number is

N��,m,k� = N�� − 2

k
��1 − q��+kq�−k, �7�

where the exponent � assumes the same values as in Eq. �6�.
In fact a mismatch can be present only in one of the �−2
internal nucleotides of the stem �i.e., from the second to the
��−1�th nucleotide�. There are � �−2

k
� ways of placing k mis-

matches in �−2 internal bases of the stem.
One of the problems with Eq. �7� is the fact that, for

example, a repeat with one mismatch can also be seen as a
repeat with zero mismatches and a shorter stem. We shall
denote these two repeats as embedded. One is usually inter-
ested in counting more embedded repeats only once. More-
over, programs designed for the search of inverted repeats,
such as palindrome of the EMBOSS package �15�, effec-
tively count embedded inverted repeats only once. Therefore,
we need a formula for nonembedded repeats. Clearly any
repeat with, say, zero mismatches can be thought of as part
of a longer repeat with a large number of mismatches. In
other words, we need to introduce an upper value of the
number of mismatches, in order to find an expression for
nonembedded repeats up to a chosen value of the number of
possible mismatches. For example, we can ask for the ex-
pected number of inverted repeats with zero mismatches that
cannot be seen as part of longer inverted repeats with one
mismatch. This of course does not guarantee that the found
repeats cannot be part of repeats with two mismatches. From
an operative point of view, this corresponds with the run of
the search program �for example, palindrome� with a maxi-

mal number of mismatches equal to k̄. Therefore, a quantity

more meaningful than Eq. �7� is N�k̄��� ,m ,k�, which is the
expected number of repeats of stem length �, loop length m,
and k mismatches, that cannot be part of a longer repeat of

the same type with at most k̄ mismatches. By definition k̄
�k. The two expressions of Eqs. �6� and �7� correspond to
N�0��� ,m ,0� and N�k��� ,m ,k�, respectively.

When k̄=1, we have

N�1���,m,0� = N�1 − q��q�,

� = 2 for 0 � m � 1,

3 for 2 � m � 3,

4 for m � 4.
� �8�

When k̄=2, we have

N�2���,m,1� = N�� − 2��1 − q��+1q�−1,

� = 2 for 0 � m � 1,

3 for 2 � m � 3,

4 for m � 4,
� �9�

and

N�2���,m,0� = N�1 − q��q�,

� = 
3 for 0 � m � 1,

4 for 2 � m � 3,

5 for 4 � m � 5,

6 for m � 6.
� �10�

The general formula is

N�k̄���,m,k� = N�� − 2

k
��1 − q��+�q�−k,

� = �1 for 0 � m � 1,

2 for m � 2,
�

� = �k̄ − k� + max�0,min��m

2
� − 1, k̄ − k�� , �11�

where �x� indicates the integer part of x.
We have performed extensive numerical simulations of

artificial genomes and we have verified that these expres-
sions are correct. Specifically, we have written computer pro-
grams able to detect inverted or mirror repeats with the re-
quired characteristics �stem and loop length, mismatches,
etc.�. Then we have performed a �2 test between the fre-
quency of observed repeats and the frequency expected by
our theory. In all cases we cannot reject the hypothesis that
our formulas are correct.
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C. Repeats with one gap

We consider now the case of inverted and mirror repeats
with one gap in the stem and no mismatches. We shall indi-
cate with � the number of links in the stem, since in such a
structure there will be � nucleotides in one branch of the
stem and �+1 in the other. The expected number of repeats
with the gap in one specific position is the same as for perfect
repeats �see Eq. �6��, i.e.,

N��,m,k = 0,g = 1� = N�1 − q��q�, �12�

where the exponent � is equal to 1 for m�1 and is equal to
2 for m�2. One could think that, since there are �−1 pos-
sible positions for the gap �on one arm�, the expected number
of repeats with one gap in any position of one arm is simply
�−1 times the value in Eq. �12�. This is wrong because the
probability of observing the gap in one position is not inde-
pendent from the probability of observing the gap in another
position. To understand why, let us consider an inverted re-
peat with �=3 and one gap. As shown in Fig. 2 there are two
positions for the gap, and the corresponding structures are
indicated as A1 and A2 in the figure. The probability of ob-
serving either A1 or A2 or both is

P�A1 � A2� = P�A1� + P�A2� − P�A1 � A2� . �13�

P�A1� and P�A2� are equal to the quantity in Eq. �12�,
whereas P�A1�A2� is the joint probability that the sequence
can form both structures A1 and A2. By looking at the figure
we note that the sequence can form both structures if X=Y

= Z̄, where the bar indicates complementarity. Thus, the joint
probability is

P�A1 � A2� = �1 − q��q2�pa
2pt + papt

2 + pc
2pg + pcpg

2�

� �1 − q��q2q̃ . �14�

For inverted repeats the quantity q̃ is the probability that X

=Y = Z̄ and it is equal to pa
2pt+ papt

2+ pc
2pg+ pcpg

2. Analo-
gously for mirror repeats q̃ is the probability that X=Y =Z
and it is equal to pa

3+ pt
3+ pc

3+ pt
3. In conclusion, the expected

number of repeats with �=3 and one gap is

N�� = 3,m,k = 0,g = 1� = N�1 − q��q2�2q − q̃� , �15�

which is of course different from the naive �and wrong� an-
swer given by 2 times the equation �12�. The generalization
of this last formula to a generic value of � is not straightfor-
ward and the derivation is reported in Appendix A. The re-
sult is

N��,m,k = 0,1� = 2Nq�−1�1 − q����� − 1�q − �� − 2�q̃� ,

� = �1 for 0 � m � 1,

2 for m � 2,
� �16�

where the factor 2 in front of N is due to the fact that the gap
can be found in one of the two arms. It is worth noting that
for large � the correct answer of Eq. �16� is 3/4 of the naive
and wrong answer given by �−1 times the expression of Eq.
�12�.

V. INVERTED AND MIRROR REPEATS IN FIRST-ORDER
MARKOV CHAINS

We now give the expression for the expected number of
repeats for a model sequence described by a first-order Mar-
kov chain. We consider the simplest case of the expected
number of perfect repeats with a given stem �of length �, as
before� and a generic loop of length m�2.

The calculation is performed in Appendix B and the result
is

PMarkov��,m� = �
n1,n2,. . .,n�=1

4

p�n1n2 ¯ n��p�n̄� ¯ n̄2n̄1�

�

�p�n1� − �
x=1

4

p�n1�x��p�x̄�n̄1���pm+1�n̄��n�� − �
y=1

4

p�n̄��y�pm−1�y�y��p�ȳ�n���
p�n1�p�n̄��

, �17�

FIG. 2. Schematic representation of the two secondary struc-
tures that can be formed by an inverted repeat with stem length �
=3, loop length m=7, and one gap in the case when both base X and
base Y are complementary to base Z �and therefore X=Y�. The
continuous thin lines indicate Watson-Crick base pairs, whereas
continuous thick lines indicate the nucleic acid backbone.
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where n̄i indicates a base matching with base ni, i.e., the
complementary of ni for inverted repeats and n̄i=ni for mir-
ror repeats. In Eq. �17� p�ni� is the probability of the occur-
rence of base i and p�n1n2¯n�� is the probability of the
occurrence of the word n1n2¯n�, that for Markov chain is
easily computable �see also Appendix B�. Even if the expres-
sion �17� looks complex, the numerical summation is easily
and quickly performed, for example, with simple programs
in Mathematica. It is worth noting that the summation is over
4� terms, whereas a direct calculation taking into account all
the possible repeats would require to sum 42�+2+m terms.

The functional dependence of PMarkov�� ,m� from � and m
are not evident by eye, such as the relative magnitude of
PMarkov�� ,m� and Pi.i.d.�� ,m�= �1−q��q� for an i.i.d. genome
�see Eq. �6��. Thus, we discuss here these issues by consid-
ering Markov models with parameters equal to the ones ob-
tained by real genomes of model organisms. Specifically, we
consider four complete genomes: �i� the Hepatitis B virus
�accession NC_003977, length=3215 bp�, �ii� the Escheri-
chia coli K12 genome �accession NC_000913, length
=4 639 675 bp�, �iii� the Drosophila melanogaster mito-
chondrion �accession NC_001709, length=19 517 bp�, and
�iv� the Homo sapiens mitochondrion �accession
NC_001807, length=16 571 bp�. Moreover, we consider in-
verted repeats.

We first discuss the dependence of PMarkov�� ,m� from the
loop length m. To this end we compute the ratio
PMarkov�� ,m� / Pi.i.d.�� ,m� for the stem length fixed at �=4, 5,
and 6. Figure 3 shows this quantity for the four model
genomes. We see that PMarkov�� ,m� has a small dependence
from m. More precisely for m larger than few units,
PMarkov�� ,m� / Pi.i.d.�� ,m� becomes independent on m.
The loop length dependence for small values of m can be
positive �panels �a�, �c�, and �d�� or negative �panel �b�� with
respect to the value for large m. In all cases the ratio

PMarkov�� ,m� / Pi.i.d.�� ,m� is significantly larger than one and
it increases with the stem length �.

Because of the small dependence on m we can consider
PMarkov�� ,m� for large values of m as a good approximation
of the probability of observing repeats. This approximation
leads to a simplification of Eq. �17�. In fact, when m is large
one can approximate the conditional probabilities in Eq.
�17�, pm+1��n̄��n��
 p�n̄�� and pm−1��y�ȳ�
 p�y�. Thus, the
probability PMarkov�� ,m� becomes independent from m and
equal to

PMarkov��,m� = �
n1,n2,,. . .,n�=1

4

p�n1n2 ¯ n��p�n̄� ¯ n̄2n̄1�
�p�n1� − �

x=1

4

p��n1�x�p��x̄�n̄1���p�n̄�� − �
y=1

4

p�n̄��y�p�y�p�ȳ�n���
p�n1�p�n̄��

.

�18�

We can now study the dependence of PMarkov�� ,m� from
the stem length �, by considering the cases when m is larger
than 4 bp. Figure 4 shows the ratio PMarkov�� ,m� / Pi.i.d.�� ,m�
as a function of � for the four genomes. In all cases the ratio
PMarkov�� ,m� / Pi.i.d.�� ,m� increases almost linearly with the
stem length �. For ��10 the order of magnitude of the error
made by the i.i.d. model in predicting the number of repeats
of a Markov sequence ranges between a few percent and
30%.

A. A simplified model

The fact that even for large values of m the number of
inverted repeats expected in a Markovian genome is signifi-
cantly larger than the number expected in an i.i.d. genome
can be explained in a simplified model of genome sequence.
We assume that the nucleotide alphabet is composed only by
two symbols �instead of four�, that the transition matrix is
parametrized as

loop length m

FIG. 3. Plots of the ratio PMarkov�� ,m� / Pi.i.d.�� ,m� between the
probability of observing an inverted repeat with stem length � and
loop length m in a Markov and in an i.i.d. genome as a function of
the loop length m. The parameters characterizing the models are
estimated by four model genomes, i.e., Hepatitis B virus �a�, E. coli
�b�, Drosophila mitochondrion �c�, and Homo mitochondrion �d�. In
each panel the curves refer to �=4, �=5, and �=6 �from bottom to
top�.

FABRIZIO LILLO AND MARCO SPANÒ PHYSICAL REVIEW E 76, 041914 �2007�

041914-6



�
1

2
+ �

1

2
− �

1

2
− �

1

2
+ �� , �19�

and that the process is stationary, so that the probability for
the two symbols are equal to 1/2. The parameter � is a mea-
sure of the distance from the i.i.d. model. With this transition
matrix, the conditional probability p�n2�n1�� is equal to 1/2
+� if n1=n2 and to 1/2−� if n1�n2. We shall call perma-
nence the first case and change the second one. We simplify
further the original model by removing the constraint that the
repeat is maximal, i.e., the condition that the two bases be-
fore and after the repeat are not complementary and that the
first and last base in the loop are not complementary. The
probability of an inverted repeat of stem length � and loop
length m�1 is given by the product of the probability of the
left-hand part of the stem times probability of the right-hand
part of the stem. The probabilities factorize because we have
assumed that the loop is large. Now the probability for a
given word in the left-hand part of the stem is 2−1�1/2
−��d1�1/2+��d2, where d1 is the number permanencies,
whereas d2 is the number of changes. Clearly it is d1+d2
=�−1. The probability for the inverted and complemented
word in the right arm of the stem is equal, so the probability
for a given inverted word is �2−1�1/2−��d1�1/2+��d2�2. We
must sum this quantity over all possible words, i.e.,

P��� =
2

4 �
d1=0

�−1 �� − 1

d1
��1

2
+ ��2d1�1

2
− ��2��−1−d1�

=
1

2
�1

2
+ 2�2��−1

, �20�

where the factor 2 in front of the sum comes from the fact

that there are two possible words with the same position of
the permanencies and of the changes obtained by exchanging
one symbol with the other. For an i.i.d. sequence the prob-
ability for an inverted stem length � is Pi.i.d.���=2−�, thus the
ratio is

P���
Pi.i.d.���

=
1
2� 1

2 + 2�2��−1

1
2�

= �1 + 4�2��−1. �21�

For small values of �, i.e., for Markovian sequences not too
different from i.i.d. ones, the binomial expansion gives

P���
Pi.i.d.���


 1 + �� − 1�4�2, � � 1, �22�

which is the almost linear behavior observed in Fig. 4. Thus,
we expect that the linear behavior observed in Fig. 4 for the
more complete model is valid for a moderate value of the
stem.

VI. HIGHER ORDER MARKOV MODELS

In the case of higher order Markov processes the analyti-
cal computation of the expected number of inverted and mir-
ror repeats becomes considerably more complex. Instead of
trying to obtain complicated expression with difficult inter-
pretation, we perform numerical simulations of higher order
Markov chains and we compare the observed number of re-
peats with the number expected from the i.i.d. theory. The
results of our simulations are shown in Fig. 5 and indicate
that the error made in using an i.i.d. model to estimate the
expected number of inverted repeats in a Markov chain
increases with �i� the stem length � and �ii� the order of
the Markov process. Nevertheless it is worth pointing
out that for moderate values of the stem length the ratio

stem length l

FIG. 4. Plots of the ratio PMarkov�� ,m� / Pi.i.d.�� ,m� between the
probability of observing an inverted repeat with stem length � and
loop length m�5 in a Markov and in an i.i.d. genome as a function
of the stem length �. The parameters characterizing the models are
estimated by four model genomes, i.e., Hepatitis B virus �empty
circles�, E. coli �empty squares�, Drosophila mitochondrion �filled
squares�, and Homo mitochondrion �filled circles�.

stem length l

FIG. 5. Plots of the ratio PkMM�� ,m� / Pi.i.d.�� ,m� between the
probability of observing an inverted repeat with stem length � and
loop length m�5 in a kth-order Markov and in an i.i.d. genome as
a function of the stem length �. The parameters characterizing the
models are estimated by four model genomes, i.e., Hepatitis B virus
�panel �a��, E. coli �panel �b��, Drosophila mitochondrion �panel
�c��, and Homo mitochondrion �panel �d��.
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PkMM�� ,m� / Pi.i.d.�� ,m� increases approximately linearly
with �. This implies that in the considered range the number
of inverted repeats in a Markovian genome is given by

PkMM��,m� 	 Ak�q�, �23�

where Ak is a parameter which slowly increases with the
order k of the Markov process.

VII. LONG-MEMORY PROCESSES

Finally we consider the problem of estimating numeri-
cally the probability of occurrence of an inverted or a mirror
repeat in a long-range nucleotide sequence. Since most of the
repeats with biological role are likely to be found in noncod-
ing regions of the genome which are often composed by
long-memory nucleotide sequences, this analysis is particu-
larly relevant for the application to real cases. We generated
long-memory nucleotide sequences by using either the RY
rule or the SW rule and with different values of the Hurst
exponent H. As discussed in Sec. II, in order to generate a
RY long-memory genome we simulated a binary long-
memory process with values xi= ±1. Then, for each xi= +1
we associated either A or G, each with probability 1/2; and
for each xi=−1, we associated either C or U, each with prob-
ability 1/2. Note that with this generation algorithm the
simulated genomes have equal nucleotide frequencies, i.e.,
pa= pc= pg= pt=1/4. We then searched in the simulated ge-
nome for perfect repeats with a given stem length � and loop
length m and we compare the observed frequencies with the
one expected by an i.i.d. genome. First, we find that also for
long-memory sequences the occurrence of inverted or mirror
repeats is essentially independent on the value of the loop
length m. As for the Markovian case we find a small depen-
dence for very small values of m. The behavior as a function
of the stem length � is very different from the i.i.d. case. In
Fig. 6 we plot the quantity PLM�� ,m� / Pi.i.d.�� ,m� as a func-
tion of �, where PLM�� ,m� is the observed probability of
inverted repeats in the long-memory sequence. The left-hand
panel shows the SW �or hydrogen bond energy� rule and the
right-hand panel shows the RY �or purine-pyrimidine� rule.
In the RY case for ��5 there is a decrease of the number of
inverted repeats with respect to the i.i.d. case whereas for
��5 the number of observed inverted repeats is larger than
the number expected in the i.i.d. case. However the value of
the ratio PLM�� ,m� / Pi.i.d.�� ,m� is never very large. For the
SW rule a different behavior is observed. In the left-hand
panel of Fig. 6 the y axis is in a logarithmic scale and the
ratio PLM�� ,m� / Pi.i.d.�� ,m� has a clear exponential depen-
dence on �. Very large values of the ratio are observed show-
ing that using the i.i.d. formula for long-memory sequence
can lead to a severe underestimation of the expected repeats.
The difference observed between the two rules can be easily
explained by recalling that an inverted repeat is formed when
many bonds can be formed between complementary bases.
Since in the SW rule the presence of, say, a C is strongly
correlated with the presence of a G nearby, it is intuitive to
understand why many more inverted repeats are observed in
a SW than in a RY long-memory genome with the same
Hurst exponent.

Since it is difficult to develop a theory for the number of
repeats in a long-memory genome, we try to get some intu-
ition by considering the simplified model for Markovian ge-
nomes presented in Sec. V A. We remind that Eq. �21� pre-
dicts that the ratio P��� / Pi.i.d.��� depends exponentially from
� according to exp�� ln�1+4�2�� where � quantifies the “dis-
tance” of the model from the i.i.d. case. We fitted the curves
in the left-hand panel of Fig. 6 with an exponential function
and we estimated the corresponding value of � as a function
of H. The inset of the left-hand panel of Fig. 6 shows that to
a good approximation �=H−1/2. This allows us to conjec-
ture that the number of inverted repeats in SW long-memory
sequences is

PLM��,m� = Pi.i.d.��,m�exp�� ln�1 + 4�H − 1/2�2��


 q� exp�� ln�1 + 4�H − 1/2�2�� . �24�

For mirror repeats we find that long-memory sequences gen-
erated according to either SW or the RY rule show a behav-
ior essentially indistinguishable from the one shown in the
left-hand panel of Fig. 6. The reason is that both rules sig-
nificantly increase the probability that two equal symbols are
found at a short distance. As a consequence Eq. �24� holds
also for mirror repeats according to either SW or RY rule.
We stress again that this formula holds for sequences with
approximately equal nucleotide frequencies. In many cases
of interest the CG content is different from 50%. Since we

stem length l

FIG. 6. Plots of the ratio PLM�� ,m� / Pi.i.d.�� ,m� between the
probability of observing an inverted or a mirror repeat with stem
length � and loop length m�5 in a long-memory and in an i.i.d.
genome as a function of the stem length � and of the Hurst expo-
nent H. Data of panel �a� are generated according to the SW �or
hydrogen bond energy� rule and the inset of panel �a� shows the
fitted � �see text� as a function of H. The dashed line is the function
�=H−1/2. Data of panel �b� refer to inverted repeats and are gen-
erated according to the RY �or purine-pyrimidine� rule. The inset of
panel �b� shows the ratio PLM�� ,m� / Pi.i.d.�� ,m� for mirror repeat in
a long-memory sequence with H=0.8 and generated according to
the SW rule. The different symbols refer to different values of the
CG content, specifically CG=50% �continuous line�, CG=60%
�diamonds�, CG=70% �circles�, and CG=80% �squares�. For each
value of H we simulated an artificial genome of length 108 bp.
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are not able to perform analytical calculations for this case
we perform numerical simulations. The method we use to
generate biased long-memory sequences is discussed in Sec.
III. The inset of the right-hand panel of Fig. 6 shows the ratio
PLM�� ,m� / Pi.i.d.�� ,m� for mirror repeats in a long-memory
genome with H=0.8 and generated according to the SW rule.
Different symbols refer to different values of the CG content.
We show CG values larger than 50% but for CG�50% we
obtain a similar behavior, i.e., for example, the curve corre-
sponding to CG=70% is indistinguishable from the one with
CG=30%. We observe that for fixed � the ratio
PLM�� ,m� / Pi.i.d.�� ,m� diminishes when the CG content in-
creases. It is worth noting that the exponential behavior of
the ratio is observed for all values of the CG content. For
inverted repeats we observe a behavior similar to the one
shown in the inset of the right-hand panel of Fig. 6. We
believe that part of the decrease of the ratio
PLM�� ,m� / Pi.i.d.�� ,m� may be due to the under specification
of the correlation structure discussed at the end of Sec. III.
Therefore, as mentioned above, Eq. �24� holds exactly only
for sequences with CG=50%. Our numerical results show
that when 40%�CG�60% the error made in using Eq. �24�
is smaller than 3%. It is important to stress that the results we
have obtained in this section are clearly a first step toward a
full understanding of the relation between long-memory se-
quences and occurrence of repeats. In fact the considered
long-memory model does not reproduce the full correlation
structure because it is based on an artificial binary correspon-
dence �see discussion at the end of Sec. III�.

In conclusion, differently from the Markov case, the ex-
ponential behavior of P��� / Pi.i.d.��� expected from the sim-
plified model is observable in long-memory sequences also
for small values of �. This is very important because it
means that when the sequence is long memory �as in many
noncoding sequences� the expected number of repeats can be
significantly larger than the number expected in an i.i.d. se-
quence. The discrepancy between i.i.d. and long-memory
models increases very quickly with H−1/2. Many regions of
real genomes can have very large values of H. For example,
parts of the human chromosome 22 have an estimated Hurst
exponent H=0.88 �32�. In these cases a careful modeling of
the nucleotide sequence is very important in estimating the
expected number of repeats.

VIII. CONCLUSIONS

In conclusion we have developed many analytical and nu-
merical results for the expected number of inverted and mir-
ror repeats with different features �stem length, loop length,
presence of mismatches or gap� under the assumption that
the investigated sequence can be modeled with different
types of sequence models. In general the computation of the
number of repeats in model sequences is a complicated prob-
lem due to combinatorial difficulties, nonindependence of
different occurrences �as in the case of gaps�, and difficulties
related to the sequence model �as for higher order Markov
process and long-memory sequences�. To the best of our
knowledge, this is the most comprehensive study of the oc-
currence of inverted and mirror repeats in model sequences.

However, the task of obtaining a full understanding of the
relation between nucleotide correlation properties and occur-
rence of repeats is far from being achieved. Our results have
been obtained by using the simplest model of long-memory
nucleotide sequence, specifically the binary model. In this
sense the results of Sec. VII are a first step toward the un-
derstanding of the relation between long-memory sequences
and repeats.

A careful estimation of the expected number of repeats in
a model sequence is crucial when the investigation of a real
sequence displays the presence of a high number of repeats.
Is this high number expected under some realistic hypothesis
of the sequence model? Without a clear answer to this ques-
tion it is very difficult to assess if the number of repeats
observed in the real sequence has a potential biological role
because the repeats are over-represented. The set of results
we have obtained in this paper could usefully complement
the repeat search algorithms to give a measure of the signifi-
cance of the number detected occurrences.
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APPENDIX A

In this appendix we derive Eq. �16� for the number of
repeats with stem length � and one gap.

There are �−1 possible positions for the gap in one arm.
Let us call Ai, �i=1, . . . ,�−1� the set of structures in which
the gap has the ith position �see Fig. 2 for the case �=3�.
This ensemble of sets has the property that for any set of
indices i1� i2� ¯ � ik it is

P�Ai1
� Ai2

� ¯ � Aik
� = P�Ai1

� Aik
� . �A1�

In fact if the sequence under consideration can form a struc-
ture with the gap both in the i1 and the ik position, then it can
form the structure with the gap in any intermediate position.

We state the following theorem.
Theorem. Given an ensemble of sets A1 ,A2 , . . . . ,AN sat-

isfying the property �A1�, it holds

P�A1 � A2 � . . . . � AN� = �
i=1

N

P�Ai� − �
i=1

N−1

P�Ai � Ai+1� .

�A2�

In order to prove this theorem we need a lemma.
Lemma. Under the above hypothesis �A1�, it is

P��i=1
n �Ai � An+1�� = P�An � An+1� . �A3�
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In fact

P��i=1
n �Ai � An+1�� = P���i=1

n−1�Ai � An+1�� � �An � An+1��

= P���i=1
n−1�Ai � An+1�� + P�An � An+1�� − P���i=1

n−1�Ai � An+1�� � �An � An+1��

= P���i=1
n−1�Ai � An+1�� + P�An � An+1�� − P��i=1

n−1��Ai � An+1� � �An � An+1��� , �A4�

where we have used the inclusion-exclusion principle. By using 2 times the property �A1� we can rewrite

P��i=1
n−1�Ai � An+1�� + P�An � An+1� − P��i=1

n−1��Ai � Ai+1 � . . . � An � An+1� � �An � An+1���

= P��i=1
n−1�Ai � An+1�� + P�An � An+1� − P��i=1

n−1�Ai � Ai+1 � . . . � An � An+1��

= P��i=1
n−1�Ai � An+1�� + P�An � An+1� − P��i=1

n �Ai � An+1��

= P�An � An+1� , �A5�

i.e., our thesis.
We can now prove the theorem. We prove it by induction.

The theorem holds for N=2, because in this case Eq. �A2� is
equivalent to the inclusion-exclusion principle. We assume
that Eq. �A2� holds for N and we prove that it holds for N
+1. In fact,

P��i=1
N+1Ai� = P��i=1

N Ai � AN+1�

= P��i=1
N Ai� + P�AN+1� − P���i=1

N Ai� � AN+1�

= P��i=1
N Ai� + P�AN+1� − P��i=1

N �Ai � AN+1��

= P��i=1
N Ai� + P�AN+1� − P�AN � AN+1�

= �
i=1

N

P�Ai� − �
i=1

N−1

P�Ai � Ai+1� + P�AN+1�

− P�AN � AN+1�

= �
i=1

N+1

P�Ai� − �
i=1

N

P�Ai � Ai+1� , �A6�

i.e., our thesis. For the benefit of the reader we note that in
the second equivalence we use the inclusion-exclusion prin-
ciple, in the fourth we use the lemma, and in the fifth we use
the induction hypothesis, i.e., that the thesis holds for N.

In the case of repeats considered in the paper it is N=�
−1 and P�Ai�= �1−q��q�. Moreover for any i it is
P�Ai�Ai+1�= �1−q��q�−1q̃. From these values and the theo-
rem �i.e., Eq. �A2��, Eq. �16� holds.

APPENDIX B

In this section we derive the expression �17� for the ex-
pected number of perfect inverted and mirror repeats in a
Markovian genome.

Let us indicate the left-hand part of the stem with
n1n2¯n�, and consequently, the right-hand part of the stem
will be n̄�¯ n̄2n̄1, where the bar indicates matching accord-
ingly to the type of investigated repeats. We shall also indi-
cate with m1¯mm the loop and with x1 �x2� the base before
�after� the repeat. The repeat can be symbolically expressed

as x1n1n2¯n�m1¯mmn̄�¯ n̄2n̄1x2. The probability for such
a structure is

p�x1�p�n1�x1�p�n2�n1� ¯ p�m1�n��p�m2�m1� ¯ p�n̄��mm� ¯

p�n̄1�n̄2�p�x2�n̄1� . �B1�

Since we are not interested in the specific bases in x1 and x2
we can sum the probability in Eq. �B1� in x1 and x2 requiring
that they are not complementary �remember that we are look-
ing for maximal repeats�. The expression becomes

p�n2�n1� ¯ p�m1�n��p�m2�m1� ¯ p�n̄��mm� ¯ p�n̄1�n̄2�

� �
x1�x̄2

p�x1�p�n1�x1�p�x2�n̄1� . �B2�

The sum term in Eq. �B2� becomes

�
x1�x̄2

p�x1�p�n1�x1�p�x2�n̄1�

= p�n1� − �
x=1

4

p�x�p�n1�x�p�x̄�n̄1� , �B3�

where we have used the property �x=1
4 p�x �y�=1.

In expression �B1� we need to sum over the possible
loops, i.e., in the variables m1 , . . . ,mm, by using the con-
straint m1� m̄m. We sum first over the internal bases of the
loop m2 , . . . ,mm−1 obtaining

p�m1�n��p�n̄��mm�

� �
m2,. . .mm−1

p�m2�m1�p�m3�m2� ¯ p�mm�mm−1�

= p�m1�n��pm−1�mm�m1�p�n̄��mm� , �B4�

where pk�b �a� is the k-step transition probability, i.e., the
probability of having the symbol b conditioned to the fact
that the k step before the symbol was a. For Markov chain
the k-step transition probability matrix is easily obtained
as the kth power of the one-step transition probability matrix.
By obtaining Eq. �B4� we have used the Chapman-
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Kolmogorov equation, that in its simpler form is
�z=1

4 p�y �z�p�z �x�= p2�y �x�.
Last we need to sum the expression �B4� over the vari-

ables m1 and mm by imposing that they are not complemen-
tary. By using again the Chapman-Kolmogorov equation we
obtain

�
m1�m̄m

p�m1�n��pm−1�mm�m1�p�n̄��mm�

= pm+1�n̄��n�� − �
y=1

4

p�n̄��y�pm−1�y�ȳ�p�ȳ�n�� . �B5�

By setting all the terms together we finally obtain

�p�n1� − �
x=1

4

p�x�p�n1�x�p�x̄�n̄1��p�n2�n1� ¯ p�n��n�−1�

��pm+1�n̄��n�� − �
y=1

4

p�n̄��y�pm−1�y�ȳ�p�ȳ�n���

�p�n̄�−1�n̄�� ¯ p�n̄1�n̄2� �B6�

that can be simplified by noting that
p�n1�p�n2 �n1�¯p�n� �n�−1�= p�n1n2¯n�� is the probability
of the � word of the left-hand part of the stem. Likewise,
p�n̄�−1 � n̄��¯p�n̄1 � n̄2�= p�n̄�¯ n̄2n̄1� / p�n̄�� is proportional to
the probability of the � word of the right-hand part of the
stem. Hence, the probability of a repeat with a specified se-
quence in the stem is

p�n1n2 ¯ n��p�n̄� ¯ n̄2n̄1�
�p�n1� − �

x=1

4

p�x�p�n1�x��p�x̄�n̄1��pm+1�n̄��n�� − �
y=1

4

p�n̄��y�pm−1�y�ȳ�p�ȳ�n���
p�n1�p�n̄��

. �B7�

On the other hand, it is easy to see that the corresponding expression for an i.i.d. sequence is

Pi.i.d. = p�n1n2 ¯ n��p�n̄� ¯ n̄2n̄1��1 − �
x=1

4

p�x�p�x̄��2

. �B8�

It is direct to show that Eq. �B7� reduces to Eq. �B8� when all the transition probabilities satisfy p�x �y�= p�x�, i.e., the process
has no memory and becomes i.i.d.

In order to obtain the number of repeats of stem length � and loop length m one needs to sum Eq. �B7� over the 4� possible
� words composing the left-hand part of the stem, i.e.,

PMarkov��,m� = �
n1,n2,. . .,n�=1

4

p�n1n2 ¯ n��p�n̄� ¯ n̄2, n̄1�

�

�p�n1� − �
x=1

4

p�n1�x�p�x̄�n̄1���pm+1�n̄��n�� − �
y=1

4

p�n̄��y�pm−1�y�ȳ�p�ȳ�n���
p�n1�p�n̄��

, �B9�

which is the result of Eq. �17�.
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